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A novel approach is presented which can be used to reduce the generalized
eigenvalue problem associated with the free vibration of a linear elastic structure
carrying lumped elements at s distinct locations. Using N component modes in
the assumed-modes method, the free vibration of such a combined dynamical
system is governed by the solution of a generalized eigenvalue problem of order
N×N, whose stiffness and mass matrices consist of diagonal matrices modified
by a total of s rank one matrices, where s corresponds to the number of attachment
points. This generalized eigenvalue problem can be manipulated such that the
natural frequencies governing free vibration can be calculated instead by solving
a much smaller characteristic determinant of order s× s. Interestingly enough,
this smaller and simpler characteristic determinant can also be obtained by using
the Lagrange multipliers formalism in conjunction with Lagrange’s equations.
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1. INTRODUCTION

The free vibration of combined dynamical systems which consist of linear elastic
structures carrying lumped attachments has been studied by many authors over
the years, and hence only a few selected references are given here [1–12]. The most
common analytical approach used is the assumed-modes method [13], which is a
procedure for discretizing a continuous system prior to obtaining the governing
equations of motion. This method consists of assuming a solution of the free
vibration problem in the form of a series composed of a linear combination of N
spatial functions multiplied by the time varying generalized co-ordinates. The
spatial functions must satisfy the boundary conditions of the unconstrained
system, defined here as the system without the attachments. This series is then
substituted into the expressions for the kinetic and potential energies, thus
reducing them to discrete form, and the equations of motion are derived by means
of Lagrange’s equations. If the lumped elements are attached to the linear elastic
structure at s distinct locations, then the mass and stiffness matrices of the
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combined system can be expressed as the sum of diagonal matrices and s rank one
matrices. The modes of vibration of the combined system correspond to the
eigensolution of an N×N generalized eigenvalue problem.

Other approaches have also been developed to analyze the dynamics of such a
combined system. Dowell and others [11, 14–17] have exploited the power of
Lagrange’s equations and the use of Lagrange multipliers to study the dynamics
of combined dynamical systems in terms of their component modes. This method
is based on using the spatial functions of the unconstrained structure in a
Rayleigh–Ritz analysis with the constraint conditions enforced by means of
Lagrange multipliers. Using this particular approach, s Lagrange multipliers and
s constraint equations are introduced into the analysis. Manipulating the
equations of motion derived by using Lagrange’s equations, the eigenvalues must
satisfy the zeros of the s constraint equations in matrix form. While the final results
obtained by the Lagrange multiplier approach are usually concise, the scheme is
rather laborious to apply, because s Lagrange multipliers and s constraint
equations need to be introduced. Due to its complexity, the method of Lagrange
multipliers seems to have been used less for free vibration than other methods.

Nicholson and Bergman [18, 19] and Kukla [5] have also analyzed the dynamics
of similar combined systems. They used the dynamic Green’s function for the
vibrating component systems to solve the generalized differential equations and
to derive the frequency equations governing the free response. While the final
results are exact, the approach they used is quite complicated, because the Green’s
function for the linear elastic structure needs first to be determined, which can be
both tedious and time consuming. Moreover, the approach can only be used when
the Green’s function for the system can be derived.

Mathematicians have been developing efficient schemes for computing the
eigenvalues of some modified matrix eigenvalue problems for years. Golub showed
in reference [20] that the eigenvalues of a N×N diagonal matrix which is modified
by a matrix of rank one can be calculated instead by solving the zeros of a simple
secular equation which consists of the sum of N terms. In the following, the
derivation given in reference [20] will first be extended, and it will be shown that
when the matrices of a generalized eigenvalue problem consist of diagonal matrices
modified by a total of s rank one matrices, the eigenvalues of the generalized
eigenvalue problem, of size N×N, can be determined instead by finding the zeros
of a characteristic determinant of size s× s. Then the utility of the proposed
approach will be demonstrated by considering various example problems, and the
results compared to known solutions.

2. THEORY

Consider a system whose free vibration is governed by the following generalized
eigenvalue problem of size N×N:

[K]h=v2[M]h, (1)
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where matrices [K] and [M] consist of diagonal matrices, [Kd ] and [Md ], modified
by the sum of p and q rank one matrices, respectively, as follows:

[K]= [Kd]+ s
p

i=1

kifif
T
i ,

[M]= [Md]+ s
q

i=1

mifi+ pf
T
i+ p (2, 3)

where

fi =[f1(xi ), . . . , fj (xi ), . . . , fN (xi )]T (4)

and xi $ xj for i$ j. The eigenvalues of equation (1) must satisfy the following
N×N characteristic determinant:

det ([K]−v2[M])=det 0[Kd ]+ s
p

i=1

kifif
T
i −v2[Md ]−v2 s

q

i=1

mifi+ pf
T
i+ p1

=det 0[Kd ]−v2[Md ]+ s
s

i=1

sifif
T
i 1=0, (5)

where s= p+ q and

si =6 ki ,
−v2m(i− p),

1E iE p,
p+1E iE s.

(6)

Instead of solving the generalized eigenvalue problem of size N×N, one can
manipulate equation (5) such that the eigenvalues are given by the zeros of the
product of the following characteristic determinants of order N×N:

det ([Kd ]−v2[Md ]) det 0[I ]+ s
s

i=1

si ([Kd ]−v2[Md ])−1fif
T
i 1=0. (7)

After some lengthy algebra, equation (7) can be shown to be identical to

det ([Kd ]−v2[Md ]) det [B]=6t
N

i=1

(Ki −v2Mi )7 det [B]=0, (8)

where Ki and Mi are the ith diagonal elements of [Kd ] and [Md ], respectively, and
the (i, j)th element of [B], of size s× s, is given by

bij = s
N

r=1

fr (xi )fr (xj )
Kr −v2Mr

+
1
si

d j
i , i, j=1, . . . , s, (9)
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where fr (xi ) denotes the rth function at xi and d j
i is the Kronecker delta. Note that

each element of [B] consists of a sum of N terms. To compute the eigenvalues of
equation (1), one can either solve a generalized eigenvalue problem of equation
(1), of dimension N×N, or equation (8), of size s× s. Finally, for the special case
of s=1 (see Appendix A for detailed derivation), equation (8) simplifies to

6t
N

i=1

(Ki −v2Mi )701+ s1 s
N

i=1

f2
i (x1)

Ki −v2Mi1=0. (10)

When v2 $Ki /Mi , the results obtained by Golub in reference [20] are obtained.
The free vibration of one- and two-dimensional linear elastic structures

constrained by linear springs or carrying oscillators or concentrated masses has
received considerable interest over the years. Interestingly, the stiffness and mass
matrices of such systems are generally given by equations (2) and (3), i.e., the
matrices consist of diagonal matrices modified by rank one matrices. Thus, instead
of calculating the natural frequencies of these systems by solving an N×N
generalized eigenvalue problem, one can determine them by solving the zeros of
a reduced characteristic determinant of size s× s.

Finally, it should be noted that the numbering scheme used in equation (6) is
formulated under the implicit assumption that the lumped masses and lumped
springs are attached at distinct locations. When the attachment points for these
elements coincide at c locations, s= p+ q− c, and equation (6) needs to be
modified slightly. Regardless, once the generalized eigenvalue problem of equation
(1) is manipulated into the form of equation (5) and the si’s are properly defined,
the results of section 2 can be readily applied.

While the approach proposed here is rather straightforward, it can be shown
to be applicable to a wide class of problems. In the following section, the natural
frequencies governing the free vibration of various combined dynamical systems
are derived by using the conventional assumed-modes method. Then the
eigenvalue problems are manipulated so that the results of section 3 can be utilized.
Whenever possible, our solutions, both analytical and numerical, will be compared
to those given in literature, obtained by using other means.

3. RESULTS

First a simple combined system, shown in Figure 1 is considered, which consists
of a linear elastic structure onto which an oscillator with no rigid body degree of
freedom is attached. The same system has also been studied by Dowell [16] and
Nicholson and Bergman [18]. Using the assumed-modes method, the lateral
displacement of the combined system at point x can be expressed in the form of
a finite series as

w(x, t)= s
N

i=1

fi (x)hi (t), (11)
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where N represents the number of modes used in the expansion, fi (x) are the
eigenfunctions of the unconstrained structure (i.e., the structure without any
attachment), that serve as the basis functions for this approximate solution, and
hi (t) are the generalized co-ordinates. Thus, the total kinetic and potential energies
of the combined system of Figure 1 can be written as

T=
1
2

s
N

i=1

Miḣ
2
i (t)+

1
2

mẇ2(x1, t)=
1
2

s
N

i=1

Miḣ
2
i (t)+

1
2

m0s
N

i=1

fi (x1)ḣi (t)1
2

,

(12)

where the Mi are the generalized masses, x1 denotes the constraint location of the
undamped oscillator, m is the mass of the oscillator, w(x1, t) is its displacement,
and an overdot denotes a derivative with respect to time. The total potential energy
is given by

V=
1
2

s
N

i=1

Kih
2
i (t)+

1
2

kw2(x1, t)=
1
2

s
N

i=1

Kih
2
i (t)+

1
2

k0s
N

i=1

fi (x1)hi (t)1
2

,

(13)

Figure 1. Combined dynamical system consisting of a linear elastic structure carrying an oscillator
with no rigid body degree of freedom.
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where the Ki are the generalized spring constants and k is the spring stiffness of
the oscillator. Applying Lagrange’s equations and assuming simple harmonic
motion,

hi (t)= h̄i ejvt, (14)

where j=z−1 and v is the natural frequency, the eigenvalue equation for the
system of Figure 1 is obtained as

[K]h=v2[M]h̄, (15)

where h̄=[h̄1 h̄2 · · · h̄N ]T is the vector of generalized co-ordinates, and

[M]= [Md ]+mf1f
T
1 , [K]= [Kd ]+ kf1f

T
1 . (16)

Matrices [Md ] and [Kd ] are both diagonal whose ith elements are given by Mi and
Ki , respectively, and f1 is a vector of the eigenfunctions at the constraint location,
x1:

f1 = [f1(x1), . . . , fi (x1), . . . , fN (x1)]T. (17)

Note that both [M] and [K] consist of a diagonal matrix modified by a rank one
matrix, thus the results previously derived in section 3 can be readily applied. For
the system of Figure 1, while p=1 and q=1, s=1 since the lumped mass and
the lumped spring are attached at the same point, namely at x1. Evoking equation
(10) and setting s1 = k−mv2, one immediately obtains the frequency equation for
the system of Figure 1 as follows:

t
N

i=1

(Ki −v2Mi )01+ (k−mv2) s
N

r=1

f2
i (x1)

Ki −v2Mi1=0. (18)

When the constraint location is not located at the node of any of the component
modes, the eigenvalues of the constrained and unconstrained systems must be
distinct; thus v2 $Ki /Mi , and equation (18) reduces to

1+ (k−mv2) s
N

r=1

f2
i (x1)

Ki −v2Mi
=0. (19)

Dowell [16] analyzed the system of Figure 1 by using the Lagrange multiplier
approach. In doing so, he formulated a constraint equation and introduced a
Lagrange multiplier. Comparing equation (18) and (7) of reference [16] (which
coincidentally, is identical to equation (19)), the absence of the product terms is
noticed. When the constraint location, x1, is coincident with any node of the
unconstrained component modes, equation (18) must be used since equation (19)
fails to generate all the natural frequencies of the combined system. In reference
[15], Dowell circumvented the difficulty by artificially disassembling the structure
and recovering all the ‘‘lost’’ modes. Alternatively, the ‘‘lost’’ modes can also be
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recovered by multiplying equation (19) through by

tN
i=1

(Ki −v2Mi ),

the common denominator of the summation terms, in which case equation (18)
is covered. Expanding equation (18), one gets

t
N

i=1

(Ki −v2Mi )+ (k−mv2)0s
N

r=1 $f2
r (x1) t

N

i=1,i$ r

(Ki −v2Mi )%1=0, (20)

which leads to a polynomial of order N in v2, giving us N eigenvalues for the
constrained system. When x1 is at a node of the ith normal mode, i.e., when
fi (x1)=0, some of the eigenvalues will correspond to those of the unconstrained
structure. Physically, when the oscillator is attached to a node of the unconstrained
normal modes, there will be certain modes of vibration of the unconstrained
system that will be unaffected by the presence of the oscillator. Thus, the
corresponding natural frequencies are expected to be unaltered when the
spring–mass system is added. If fj (x1) in the summation is zero, then one of the
natural frequencies of the combined system will be identical to zKj /Mj , the
natural frequency of the jth unconstrained normal mode. The remaining natural
frequencies can still be extracted by solving equation (19). Note that the solution
obtained by Dowell has been recovered by using the more conventional and
simpler assumed-modes method. In addition, the resultant frequency equation
obtained can be used even when x1 is at a node of the unconstrained normal modes.

Nicholson and Bergman also analyzed the system of Figure 1 in reference [18],
where the linear elastic structure is a uniform cantilevered beam and x1 is not at
a node of the component normal modes. They solved the frequency equation
exactly by using the Green’s function approach, and verified their solution to those
obtained by using a 10 and 14 term Galerkin’s method and the finite element
method (see reference [18] for a detailed discussion of their finite element results).
In order to compare with their solution, let fi (x) of equation (19) be the
normalized (with respect to the mass per unit length, r, of the beam)
eigenfunctions of a uniform cantilevered Euler–Bernoulli beam of length L:

fi (x)=
1

zrL 0cos bix−cosh bix+
sin biL−sinh biL
cos biL+cosh biL

(sin bix−sinh bix)1,
(21)

such that the generalized masses and stiffnesses are given by

Mi =1 and Ki =(biL)4EI/(rL4), (22)

where E is the Young’s modulus, I is the moment of inertia of the cross-section
of the beam, and biL satisfies the transcendental equation

cos biL cosh biL=−1. (23)
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T 1

The first eight natural frequencies, normalized with respect to the fundamental
natural frequency of a uniform cantilevered beam, of a cantilevered beam carrying
an undamped oscillator with no rigid body degree of freedom (see Figure 1) at
x1 =0·78L. The mass and spring stiffness of the oscillator are m= rL and
k=30EI/L3, respectively. The natural frequencies are non-dimensionalized by
dividing by zEI/(rL4). The exact, Galerkin and FEM results are obtained from

reference [17]

Natural frequency Exact Galerkin (N=14) FEM Equation (19) (N=14)

1 1·39370 1·39370 1·3937 1·39370
2 6·26599 6·26599 6·2660 6·26599
3 14·93879 14·94144 14·939 14·94106
4 28·61698 28·62937 28·618 28·62758
5 52·94585 52·96782 52·953 52·96463
6 84·73575 84·73908 84·73859
7 110·88502 111·15113 111·11206
8 139·59270 140·12006 140·03976

Table 1 compares the results obtained by solving equation (19), for N=14, and
those given in reference [18]. From Table 1, note the excellent agreement between
the results of equation (19) and the exact solution given in reference [18]. The slight
discrepancy in results between the Galerkin or assumed-modes method and the
present approach is due to the solver used in reference [18]. When the
assumed-modes method is applied using a double precision version of the
subroutine rsg.f in EISPACK [21], the results between the Galerkin and the present
scheme become identical.

Consider now the combined system of Figure 2, which consists of a linear elastic
structure carrying an oscillator with a rigid body degree of freedom. This system

Figure 2. Combined dynamical system consisting of a linear elastic structure carrying an oscillator
with a rigid body degree of freedom.
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has also been analyzed by Dowell [16] and Nicholson and Bergman [18]. The total
kinetic and potential energies of the system of Figure 2 are given by

T=
1
2

s
N

i=1

Miḣ
2
i (t)+

1
2

mż2(t), (24)

V=
1
2

s
N

i=1

Kih
2
i (t)+

1
2

k(w(x1, t)− z(t))2 =
1
2

s
N

i=1

Kih
2
i (t)

+
1
2

k0s
N

i=1

fi (x1)hi (t)− z(t)1
2

, (25)

where z(t) represents the displacement of the oscillator. Applying Lagrange’s
equations and assuming simple harmonic motion for hi (t) and z(t), one obtains
the generalized eigenvalue problem

$ [K]
−kfT

1

−kf1

k %$h̄z̄%=v2$[M]
0T

0
m%$h̄z̄%, (26)

where h̄ is a vector of generalized co-ordinates, and the N×N matrices [M] and
[K] are

[M]= [Md ], [K]= [Kd ]+ kf1f
T
1 . (27)

From the second equation of equation (26), one has

−kfT
1 h̄+ kz̄=v2mz̄. (28)

Solving for z̄ one obtains

z̄=−
kfT

1 h̄

mv2 − k
. (29)

Substituting equation (29) into the first equation of (26) yields

0[K]+
k2f1f

T
1

mv2 − k1h̄=v2[M]h̄. (30)

After some algebra, it is found that the natural frequencies of Figure 2 must satisfy
the N×N characteristic determinant

det 0[Kd ]−v2[Md]+
kmv2

mv2 − k
f1f

T
11=0, (31)
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T 2

The first eight natural frequencies, normalized with respect to the fundamental
natural frequency of a simply supported beam, of a uniform simply supported
Euler–Bernoulli beam carrying an undamped oscillator with a rigid body degree of
freedom (see Figure 2) at x1 =0·78L. The mass and spring stiffness of the oscillator
are m= rL and k=780EI/L3, respectively. The natural frequencies are
non-dimensionalized by dividing by zEI/(rL4). The exact, Galerkin and FEM

results are obtained from reference [17]

Natural frequency Exact Galerkin (N=14) FEM Equation (32) (N=14)

1 0·70947 0·70948 0·70947 0·70948
2 2·23736 2·23762 2·2374 2·23762
3 5·23911 5·23978 5·2393 5·23978
4 9·51339 9·51376 9·5138 9·51376
5 16·04630 16·04633 16·048 16·04633
6 25·01936 25·01937 25·01937
7 36·09847 36·09853 36·09853
8 49·10021 49·10028 49·10028

which appears in the form of equation (5). Thus, using equation (10), the frequency
equation of Figure 2 is immediately written as

t
N

i=1

(Ki −v2Mi )01+
kmv2

mv2 − k
s
N

i=1

f2
i (x1)

Ki −v2Mi1=0. (32)

When x1 does not coincide with any node of the unconstrained component modes,
equation (32) reduces to equation (7a) derived by Dowell in reference [16]. Again,
it should be emphasized that equation (32) was obtained by reducing the
generalized eigenvalue problem associated with free vibration, while Dowell used
the rather complicated Lagrange multiplier formalism in determining the same
frequency equation.

Nicholson and Bergman [18] also examined the system of Figure 2, where the
linear elastic structure consists of a uniform simply supported Euler–Bernoulli
beam. They used the Green’s function approach in their derivation of the
frequency equation, and they validated their solution by using a Galerkin’s
approach and the finite element method. In order to compare with the results given
in reference [18], fi (x) of equation (32) is defined as

fi (x)=X 2
rL

sin
ipx
L

, (33)

which are the normalized (with respect to the mass per unit length, r, of the beam)
eigenfunctions of a simply supported Euler–Bernoulli beam, so that the
generalized masses and stiffness become

Mi =1 and Ki =(ip)4EI/(rL4). (34)
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Table 2 compares the results of equation (32) to those given in Table 2 of reference
[18]. Note again the excellent agreement between the solutions.

Consider next the free vibration of a two-dimensional structure onto which an
oscillator with a rigid body degree of freedom is attached at (x1, y1) (see Figure
3). Using the assumed-modes method and the results of section 3, the frequency
equation for the aforementioned constrained two-dimensional system is given by
(the steps to derive the frequency equation are identical to those outlined for the
sample problem of Figure 2, hence they are omitted here for brevity)

t
N

i=1

(Ki −v2Mi )01+
kmv2

mv2 − k
s
N

i=1

f2
i (x1, y1)

Ki −v2Mi1=0, (35)

where fi (x1, y1) are the eigenfunctions of the unconstrained two-dimensional
structure.

Nicholson and Bergman [19] also analyzed the system of Figure 3, where the
two-dimensional structure consists of a simply supported rectangular plate. They
calculated the natural frequencies of the combined system by using the Green’s
function approach. In order to compare with their results, let the
fi (x, y)=fpq (x, y) be the normalized eigenfunctions of a simply supported plate:

fpq (x, y)=
2

zrab
sin

ppx
a

sin
qpy
b

, (36)

where r is the mass per unit area of the plate; a and b are the lengths of the plate
in the x and y directions, respectively. Then the generalized masses and stiffnesses
become

Mi =Mpq =1 and Ki =Kpq = p40p2

a2 +
q2

b21
2 D
r

, (37)

Figure 3. Combined dynamical system consisting of an oscillator with a rigid body degree of
freedom attached to a plate.
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T 3

The first six natural frequencies of a uniform simply supported rectangular plate
carrying an undamped oscillator with a rigid body degree of freedom (see Figure 3)
at (x1, y1)= (0·225a, 0·275a). The ratio of the plate lengths is given by b/a=0·75.
The mass and spring stiffness of the oscillator are m= ra2 and k=100a2/D,
respectively. The natural frequencies are non-dimensionalized by dividing by

zD/r . The exact results are obtained from reference [18]

Natural frequency Exact Equation (38) (r= n=10)

1 8·09799 8·10038
2 30·13446 30·14057
3 60·45673 60·46554
4 80·83303 80·83596
5 107·36171 107·36422
6 111·56776 111·57855

where D=Eh3/[12(1− m2)] is the bending stiffness, h is the plate thickness and m

is the Poisson’s ratio. Since the attachment location considered by Nicholson and
Bergman [19] does not coincide with a node, the frequency equation of equation
(35) reduces to

1+
kmv2

mv2 − k
s
r

p=1

s
n

q=1

4(sin2 ppx1/a)(sin2 qpy1/b)
rab(p4(p2/a2 + q2/b2)2D/r−v2)

=0. (38)

Table 3 shows the results obtained by solving equation (38), for r= n=10, and
those given in Table 1 of reference [19]. Note the excellent agreement between the
solutions.

As a final example, let us consider the free vibration of a linear elastic structure
carrying various lumped attachments, as shown in Figure 4, which consists of
linear translational springs of stiffnesses k1 and k2 at x1 and x5, a linear rotational
spring of stiffness c at x3, a concentrated mass m at x2, and a linear undamped
oscillator of mass M and stiffness kM at x4. The total kinetic and potential energies
of the system are

T=
1
2

s
N

i=1

Miḣ
2
i (t)+

1
2

mẇ2(x2, t)+
1
2

Mż2(t), (39)

V=
1
2

s
N

i=1

Kih
2
i (t)+

1
2

k1w2(x1, t)+
1
2

k2w2(x5, t)+
1
2

cu2(x3, t)

+
1
2

kM (z(t)−w(x4, t))2, (40)
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where w(x, t) and u(x, t) represent the lateral and rotational displacements,
respectively, of the linear elastic structure at point x, and they can be expressed
in the form of finite series as

w(x, t)= s
N

i=1

fi (x)hi (t), u(x, t)= s
N

i=1

ci (x)hi (t). (41)

The functions fi (x) and ci (x) are the transverse and rotational eigenfunctions of
the unconstrained system that serve as the basis functions for this approximate
solution. Applying Lagrange’s equations and assuming simple harmonic motion,
the generalized eigenvalue problem governing free vibration for the system of
Figure 4 can be written as

$ [K]
−kMfT

4

−kMf4

kM %$h̄z̄%=v2$[M]
0T

0
M%$h̄z̄%. (42)

Figure 4. Combined dynamical system consisting of a linear elastic structure with various lumped
attachments.
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The N×N matrices [M] and [K] are

[M]= [Md ]+mf2f
T
2 , (43)

[K]= [Kd ]+ k1f1f
T
1 + k2f5f

T
5 + cc3c

T
3 + kMf4f

T
4 , (44)

where

fi =[f1(xi ), . . . , fj (xi ), . . . , fN (xi )]T,

ci =[c1(xi ), . . . , cj (xi ), . . . , cN (xi )]T. (45)

Solving for z̄ using the second equation of equation (42) and substituting the
resultant into the first equation of equation (42) yields

0[K]+
k2

Mf4f
T
4

Mv2 − kM1h̄=v2[M]h̄. (46)

Rearranging equation (46), one can write it alternatively as

0[Kd ]−v2[Md ]+ s
5

i=1

siuiuT
i 1h̄=0, (47)

where

s1 = k1, s2 =−mv2, s3 = c, s4 =
kMMv2

Mv2 − kM
, s5 = k2, (48)

and ui is a vector of length N whose jth element is given by

uj (xi )=6fj (xi ),
cj (xi ),

i=1, 2, 4, 5,
i=3.

(49)

Since the characteristic determinant of equation (47) appears in the form of
equation (5), the characteristic determinant governing the frequency equation of
Figure 4 is immediately obtained by applying equations (8) and (9).

It should be emphasized that the above formulation is equally applicable
regardless if the linear elastic structure consists of an Euler–Bernoulli beam or a
Timoshenko beam. If the linear elastic structure is an Euler–Bernoulli beam, then
the rotational and translational displacements are related by

u(x, t)=
1w
1x

(x, t). (50)

Then cj (xi ) of equation (49) simplifies to cj (xi )=f'j (xi ), where the prime denotes
a derivative with respect to x. When the attachment locations, the xi , do not
coincide with the nodes of the unconstrained component modes, the natural
frequencies of the system of Figure 4 are given by the roots of the 5×5
characteristic determinant

det [B]=0, (51)
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where the (i, j)th element of [B] is given by

bij = s
N

r=1

ur (xi )ur (xj )
Kr −v2Mr

+
1
si

d j
i , i, j=1, . . . , 5, (52)

and the si are defined in equation (48).
In reference [17] Posiada<a analyzed the free vibration of a similar system which

consists of an Euler–Bernoulli beam carrying additional elements. He derived the
frequency equation for the combined system by means of the Lagrange multiplier
approach, which required considerable effort. For the system of Figure 4, in the
limit as k2:a, the support against beam translation considered in reference [17]
is obtained, and equation (51) reduces to equation (13) of reference [17] exactly.
Since Posiada<a had already verified his solution in reference [17], no such
numerical validation will be made here.

4. CONCLUSIONS

A novel approach has been introduced to reduce the size of the characteristic
determinant needed to calculate the natural frequencies of combined dynamical
systems consisting of linear elastic structures carrying assorted lumped
attachments at s distinct locations. Using the classical assumed-modes method in
conjunction with the Lagrange’s equations, it was found that the natural
frequencies are obtained by solving the roots of an N×N characteristic
determinant. Algebraically manipulating this characteristic determinant, it is
reduced to a smaller one of size s× s, the same solution that is obtained by
applying the more complicated and often more tedious Lagrange multipliers
formalism. Finally, it should be emphasized that while the results are obtained in
the engineering context by considering the free vibration of combined dynamical
systems, the results formulated can be extended to determine the eigenvalues of
any diagonal matrix modified by a series of rank one matrices.
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APPENDIX A

The derivation of equation (9) is rather lengthy. For brevity, let us consider
instead the special case of s=1. The general case of arbitrary s is merely an
extension of the below derivation. For s=1, equation (5) can be manipulated as
follows:

det ([K]−v2[M])=det ([Kd ]−v2[Md ]+ sffT)

=det ([Kd ]−v2[Md ]) det ([I]+ s([Kd ]−v2[Md ])−1ffT)

=6t
N

i=1

(Ki −v2Mi )7 det ([I ]+ s([Kd ]−v2[Md ])−1ffT)=0.
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Consider now the remaining determinant:

det ([I ]+ s([Kd ]−v2[Md ])−1ffT)

f2
1 f1f2 · · · f1fN

s/(K1 −v2M1) · · · 0
f2f1 f2

2 · · · f2fN

=det [I ]+ ···
· · ·

··· ···
···

· · ·
···

0 · · · s/(KN −v2MN )
fNf1 fNf2 · · · f2

N

1+ sf2
1/(K1 −v2M1) sf1f2/(K1 −v2M1) · · · sf1fN /(K1 −v2M1)

sf2f1/(K2 −v2M2) 1+ sf2
2/(K2 −v2M2) · · · sf2fN /(K2 −v2M2)

=det ···
···

· · ·
···

.

sfNf1/(KN −v2MN ) sfNf2/(KN −v2MN ) · · · 1+ sf2
N/(KN −v2MN )

For columns i=1, . . . , N−1, multiply column i+1 by −fi /fi+1 and add the
resultant to column i (the determinant will not change by this operation), then the
above reduces to

1 0 0 · · · 0 sf1fN /(K1 −v2M1)

−f1/f2 1 0 · · · 0 sf2fN /(K2 −v2M2)

0 −f2/f3 1 · · · 0 sf3fN /(K3 −v2M3)
det

0 0 −f3/f4
· · · 0 ···

=det [A].

···
···

· · ·
· · ·

· · ·
···

0 0 0 · · · −fN−1/fN 1+ sf2
N/(KN −v2MN )
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G
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j
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f
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G
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Expanding the above determinant along the last column yields

det [A]=
sf1fN

K1 −v2M1 0−f1

f210−f2

f31 · · · 0−fN−1

fN 1
−

sf2fN

K2 −v2M2
(1)0−f2

f310−f3

f41 · · · 0−fN−1

fN 1
+· · ·

−
sfN−1fN

KN−1 −v2MN−1
(1)(1)(1) · · · 0−fN−1

fN 1
+01+

sf2
N

KN −v2MN1(1)(1) · · · (1)

=
sf2

1

K1 −v2M1
+

sf2
2

K2 −v2M2
+

sf2
3

K3 −v2M3
+ · · ·+

sf2
N

KN −v2MN
+1

=1+ s
N

i=1

sf2
i

Ki −v2Mi
.
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